

Looking for Needles in Needlestacks

with the Threat Hunting Toolkit

About Us

- Derek and Ethan
- Threat Hunters with Black Hills Info Sec
- More at the end if you're still here

Roadmap

- What is Threat Hunting
- Types of Data Sources
- Example Hunt for C2

What is Threat Hunting Anyway?

Proactive approach to identifying threats - Josh Liburdi, BroCon 2015

Human-driven, proactive and iterative search through networks, endpoints, or datasets in order to detect malicious, suspicious, or risky activities that have evaded detection by existing automated tools.

- Hunt Evil: Your Practical Guide to Threat Hunting, Sqrrl

Human-centric process of proactively searching through networks for evidence of attacks that evade existing security monitoring tools.
Chris Sanders, Practical Threat Hunting

What is Threat Hunting Anyway?

- Act of tracking and eliminating cyber adversaries from your network as early as possible.
- Dr. Eric Cole, 2017

Threat hunting is just the new term for "farting around on the network" - Anonymous

What is Threat Hunting Anyway?

Common Themes

- It's proactive
- Taking a large amount of data and finding a subset
- Find what existing protections miss
- Investigate the weird (anomalous does not necessarily mean bad)

Image Credit: Austin Taylor

Modern Threat Hunting Challenges

- Ever growing traffic volume
- Log correlation
- More sophisticated attackers

 CDNs
 - Fileless malware
- Remote workforce
 - \circ VPNs
 - Split tunnels

- Encrypted traffic
 - TLS 1.3
 - Encrypted Server Name Indicator (ESNI)
 - DNS over TLS/HTTPS
- Cloud
 - Containers
 - Serverless

Hypothesis Based Threat Hunting

- Attempting to prove or disprove a question of interest
- Data + Technique
 - Stack counting
 - Anomaly detection, outlier discovery
 - Set theory
 - \circ Beaconing

Big Three

- Host
- Network
- Active Directory (Azure)

Other Types

- Appliance logs (Proxies)
- Firewall logs
- Cloud resource logs
- Application logs (Web Servers, etc)
- Intrusion Detection System

Host Logs

Examples

- Process execution
- Network connection
- Login attempt

Sources

- Sysmon
- Osquery
- Wazuh
- Elastic Agent
- OpenEDR

Host Logs

Pros

• Increased visibility

- Can be difficult to deploy
- Compromised host can hide
- No de facto standard
- No IoT

Active Directory Logs

Examples

- Authentication attempts
- Process logging
- Powershell script block

Sources

- Windows events
- Azure AD (may require extra \$\$)

Active Directory Logs

Pros

• Holisic picture of Windows environment

- Windows only; missing Linux, OSX, IoT
- Not originally designed for security

Network Logs

Examples

- IP network flows (layers 3 & 4)
- DNS queries
- Protocols
- Amount of data transferred

Sources

- Zeek
- Netflow
- Tcpdump
- Proxy/firewall

Network Logs

Pros

- Very difficult to hide from
- May be easier to deploy
- Mature open source and free options

- Little visibility for encrypted traffic
- Hardware & storage costs
- Limited/immature support for cloud, PaaS, and containers

Netflow

Pros

- Already supported by existing network devices
- Tooling is mature
- Small storage cost

- Every vendor has their own nuanced implementation
- Not designed for security

Full Packet Capture

Pros

- All content passess over the wire
- See everything, know everything

- High storage requirements
- High disk I/O requirements
- Time consuming to search

Zeek (formerly Bro)

Pros

- Records interesting metadata
- Extensible
- Stiches flows (unidirectional) into connection events (bidirectional)

- Requires separate capture system
- Installation and tuning at scale can be difficult

Which source is right for you?

1-hr Network Capture

You have data. Now what?

Introducing...

Threat Hunting Toolkit (THT)

- One toolkit for many text log sources
- Consistent environment
- Easy installation

https://github.com/ethack/tht

Threat Hunter Toolkit

Install

sudo curl -o /usr/local/bin/tht \
 https://raw.githubusercontent.com/ethack/tht/main/tht
sudo chmod +x /usr/local/bin/tht

Start

tht

Use

root@zeek /host/opt/zeek/logs
\$ filter --dns google.com | chop query | domain 3 | mfo

Example Hunt

Hypothesis

• There is command and control (C2) on our network.

Assumptions

- How can attackers hide?
- Content Delivery Networks (CDNs)
- Let's start by looking at CloudFront.

Background

- What does "normal" CloudFront traffic look like?
 - SSL/TLS to a subdomain of *cloudfront.net*.
 - Subdomain is a random string, such as *dko9feizeit4mi.cloudfront.net*.
 - Subdomains are not shared between CloudFront customers.

Possible Anomalies

AnomalyData SourceNewly observed CloudFront domain \Rightarrow dns.log, ssl.logAbnormal traffic volume to CloudFront \Rightarrow conn.log, ssl.logRare JA3 hash \Rightarrow ssl.log

Newly Observed Domains

- How do we know a domain is new on our network?
 - Search through historical logs
 - $\circ~\mbox{Passive DNS}$

Have you seen this van in your network before?

Passive DNS

- Historical record of IP address and domain mappings
- First and last seen
- Count

https://github.com/JustinAzoff/bro-pdns

Passive DNS

<pre>\$ pdns find in +</pre>	dividual	example	COM	-
Value	Which	Count	First	Last
example.com	Q +	4614 +	2021-06-18 17:02:56	2021-09-09 00:42:2 +

<pre>\$ pdns find tuples example.com</pre>						
ļ	Query	Туре	Answer	Count	TTL	First
+	example.com example.com	AAAA A	2606:2800:220: 93.184.216.34	590 3927	84 519	2021-06-21 18:2 2021-06-18 17:0

Newly Observed Domains

How many new CloudFront subdomains show up each day?

```
$ pdns like individual cloudfront.net |
chop First | chop 1 | freq
145 2021-07-07
95 2021-07-08
93 2021-07-09
16 2021-07-10
3 2021-07-11
89 2021-07-12
129 2021-07-13
120 2021-07-14
```

Newly Observed Domains

\$ filter --ssl cloudfront.net | chop server_name | mfo 5
104132 dohshe7fai3sei.cloudfront.net
657 dquaetheephae9.cloudfront.net
43 dko9feizeit4mi.cloudfront.net
35 diu3iethangeet.cloudfront.net
34 diesh7hiegh4fo.cloudfront.net

When did this abnormal traffic pattern start?

\$ filter --ssl cloudfront.net | chop ts | ts2 | freq | plot-bar

Now that we have an anomaly it is useful to know when it was first seen.

\$	pdns find individual dohshe7fa:	i3sei.cloudfront.net	chop Value First
+ ·	Value	+ First	+ Last
+ -	dohshe7fai3sei.cloudfront.net	+ 2021-06-22 21:33:55 +	+ 2021-06-25 19:13 +

Which sources were communicating with the domain?

\$ filter --ssl dohshe7fai3sei.cloudfront.net | chop id.orig_h | distinct
192.168.2.20
192.168.2.49
192.168.2.127
192.168.3.20

These four systems are now our suspects.

Sidebar: Cheatsheet

Command	Purpose	Alternative
filter	search within files	find grep
chop	select columns	cut or zeek-cut
freq	frequency counts	sort uniq -c
mfo	most frequent occurrence	sort uniq -c sort -nr
distinct	unique elements	sort uniq
countdistinct	cardinality	sort uniq wc -l
ts2	convert timestamps	
plot-bar	bar graph	

JA3 Hash

- What is a JA3 hash?
 - Semi-unique fingerprint for an SSL/TLS client.
 - Similar to User-Agent string for HTTP traffic.
 - Derived from client's choice of parameters for an SSL connection.
 - There can be different clients with the same JA3, especially if they use the same underlying SSL library.

Pivot: JA3 Hash (1)

Find the hash used to contact the suspected domain.

\$ filter --ssl dohshe7fai3sei.cloudfront.net | chop id.orig_h ja3 | mfo

63299192.168.2.49258a5a1e95b8a911872bae908152664414909192.168.2.127258a5a1e95b8a911872bae908152664425921192.168.3.20258a5a1e95b8a911872bae9081526644133192.168.2.20258a5a1e95b8a911872bae9081526644

All source IPs found so far use the same JA3 hash: 258a5a1e95b8a911872bae9081526644

Pivot: JA3 Hash (2)

Where else has this hash been used from? Is it rare?

\$ filter --ssl 258a5a1e95b8a911872bae9081526644 | chop id.orig_h | count
84

Used by 84 other sources.

Pivot: JA3 Hash (3)

Where have clients been connecting to using this hash? Do we spot any patterns or outliers?

\$ filt	erssl 258a5a1e95b8a911872bae9081526644 chop server_name dom
10413	2 cloudfront.net
733	6 microsoft.com
730	5 live.com
532	6 office.com
412	8 office365.com
154	4 outlook.com
132	1 sharepoint.com
92	9 go-mpulse.net
70	6 windows.net
52	6 office.net

Pivot: JA3 Hash (4)

Which CloudFront destinations has the hash been used?

Let's limit it to our suspect IPs in ips.txt.

\$ filter --ssl 258a5a1e95b8a911872bae9081526644 cloudfront.net | filter

104132 dohshe7fai3sei.cloudfront.net
1351 daid4aetheech4.cloudfront.net
7 d280ht16bmiuo6.cloudfront.net

Two new CloudFront domains.

Conclusion

- Actual red team engagement
- Four source hosts found compromised
- Main C2 server: *dohshe7fai3sei.cloudfront.net*
- Remaining CloudFront domains were long haul / backup C2

Problems

- Heavy CloudFront usage
- TLS 1.3 with encrypted SNI
- DNS over HTTPS / TLS

References

- Bro's Before Flows Troy Wojewoda RVA5ec 2016
 - o <u>https://www.youtube.com/watch?v=utqsrVLM6mo</u>
- Data Analysis, Machine Learning, Bro, and You! Brian Wylie BroCon 2017
 https://www.youtube.com/watch?v=pG5lU9CLnlU
- Data Science Hunting Funnel Austin Taylor
 - <u>http://www.austintaylor.io/network/traffic/threat/data/science/hunting/funnel/machine/leascience-hunting-funnel/</u>

About Us

Derek Banks Ethan Robish

Has kids	\checkmark	\checkmark
Likes to fish	\checkmark	
Amateur photographer		\checkmark
Incident Responder	\checkmark	
Developer		\checkmark
Threat Hunter	\checkmark	\checkmark
Writing a Course	\checkmark	\checkmark

47 / 47